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a b s t r a c t

The mimetic finite difference (MFD) methods mimic important properties of physical and
mathematical models. As a result, conservation laws, solution symmetries, and the funda-
mental identities of the vector and tensor calculus are held for discrete models. The MFD
methods retain these attractive properties for full tensor coefficients and arbitrary polyg-
onal meshes which may include non-convex and degenerate elements. The existing MFD
methods for solving diffusion-type problems are second-order accurate for the conserva-
tive variable (temperature, pressure, energy, etc.) and only first-order accurate for its flux.
We developed new high-order MFD methods which are second-order accurate for both
scalar and vector variables. The second-order convergence rates are demonstrated with a
few numerical examples on randomly perturbed quadrilateral and polygonal meshes.

Published by Elsevier Inc.
1. Introduction

Modeling with arbitrary polygonal and polyhedral meshes has a number of advantages. In modeling of subsurface flows
such meshes allow to describe accurately small, detailed structures, such as tilted layers, pinch-outs and irregular inclusions.
The polygonal and polyhedral meshes cover the space more efficiently than simplicial meshes which eventually reduces the
number of discrete unknowns. The locally refined meshes with hanging nodes are used frequently to improve resolution in
the regions of interest, such as moving fluid fronts and sharp solution variations. Such meshes are particular examples of
polygonal and polyhedral meshes with degenerate elements. Here we develop new mimetic finite difference (MFD) methods
for solving a linear diffusion problem on arbitrary polygonal meshes. The methods are developed and tested in two dimen-
sions, however, the underlying ideas may be extended to polyhedral meshes with planar mesh faces.

The MFD methods combine flexibility of finite volume methods with analytical power of finite element methods. Their
success in different applications [1,2,5,7,11,14] is due to mimicking essential properties of the continuum models, such as
conservation laws, solution symmetry and positivity, and the fundamental identities and theorems of vector and tensor cal-
culus. The MFD methods retain these attractive properties in the case of full tensor coefficients.

For the linear diffusion problem, the MFD methods mimic the Gauss divergence theorem, which results in locally conser-
vative discretizations. These MFD methods, also, preserve symmetry between the gradient and divergence operators and the
null spaces of these operators. The recently developed MFD methods (see [5,6] and references therein) are the low-order
discretization methods. They provide the second-order convergence rate for the conservative variable (temperature, pres-
sure, energy, etc.), and only the first-order convergence rate for its flux. More accurate flux resolution makes significant
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impact on evolution of physical systems [18]. We developed new MFD methods that are second-order accurate for the flux
variable.

There are a few fundamentally different approaches to increasing accuracy of discretization methods. Finite volume and
finite difference methods increase stencils of discrete operators which impose severe restrictions on mesh smoothness. To
resolve this issue, high-order finite difference methods on non-uniform meshes were developed in [8,9] using mimetic
ideas. However, these methods are limited to smooth quadrilateral meshes and lose accuracy on rough meshes. The finite
element and spectral element methods increase the number of unknowns inside each element [10] but impose severe
restrictions on the shape of admissible mesh elements. Other approaches use Padé-type approximations and are not prac-
tical for general meshes. Interesting blending of finite volume and finite element ideas in [17] resulted in new high-order
finite volume methods on simplicial meshes. The high-order MFD methods proposed in this article blend ideas of finite
element and recently developed low-order MFD methods [2,6]. They use the same discrete unknowns for the scalar var-
iable as the low-order MFD methods and double the number of flux unknowns; the zeroth and first-order moments of the
normal flux are defined on mesh edges. In case of triangular meshes, the distinction between the low-order and high-order
MFD methods resembles that of the low-order Raviart–Thomas (RT0) and Brezzi–Douglas–Marini (BDM1) finite element
methods [3].

Here we present two new high-order MFD methods. The development of the first high-order MFD method was inspired in
part by ideas of low-order Kuznetsov–Repin finite element methods [12,13]. To construct an inner product in the space of
discrete fluxes, we divide a polygon into triangles and use the existing formula for exact integration of linear fluxes on a tri-
angle. The auxiliary triangular partition introduces additional flux unknowns on interior edges. Half of these unknowns, 0th
moments of the normal flux, are eliminated using the Kuznetsov–Repin approach. The remaining unknowns are eliminated
by mimicking integral identities for particular spaces of vector-functions. The method is useful for problems where the flux
has to be recovered at some points inside polygonal elements (e.g. problems of reactive transport in porous media, com-
pressible flows).

The development of the second high-order MFD method was inspired in part by the methods developed in [2,5,6].
Contribution of each polygonal element to the inner product matrix is calculated using only the boundary data (normals
to polygon edges, length of edges, and quadrature rules for edge integrals). Since, no auxiliary triangular partition is required,
the proposed method can be applied to meshes with degenerate polygons, which appear in adaptive mesh refinement (AMR)
methods, and non-convex polygons, which appear in moving mesh methods. The method results in a family of discretization
schemes (e.g. one parameter for every triangle and three parameters for every quadrilateral). In case of triangular meshes,
this family contains the scheme arising from the BDM1 finite element method [3, Chapter III]. In numerical experiments, we
use the simplest choice for these parameters.

The paper outline is as follows: in Section 2, we present the high-order MFD method. In Section 3, we describe the inner
product in the space of discrete fluxes. In Section 4, convergence of the method is verified by numerical experiments on
quadrilateral and polygonal meshes.

2. Mimetic finite difference methods

We consider the stationary heat conduction equation in a polygonal domain X:
�divðKruÞ ¼ q in X; ð2:1Þ
where u is the temperature, K is the full conductivity tensor and q is the forcing term indicating the source of heat. In this
article, we consider the Dirichlet boundary conditions
u ¼ u0 on oX: ð2:2Þ
Eq. (2.1) can be written as a system of two linear equations for the scalar unknown u and its flux ~F:
div~F ¼ q; ~F ¼ �Kru in X: ð2:3Þ
The first equation is the conservation of heat and the second one is the constitutive equation.
The success of the mimetic finite difference method is in mimicking important properties of continuum equations such as

the Green formula,
Z
X

K�1ðKruÞ �~F dx ¼ �
Z

X
udiv~F dxþ

Z
oX

u0
~F �~ndx; ð2:4Þ
which expresses the symmetry relationship between operators div and Kr. Hereafter all functions are assumed to be suf-
ficiently smooth, such that all integrals do exist.

A finite difference discretization of the system (2.3) requires a discretization for the scalar functions u; q, the vector func-
tion~F, and the differential operators Kr, div. Among all possible discrete operators approximating Kr and div, the mimetic
approach uses only operators which satisfy a discrete Green formula. This requires to discretize integrals in (2.4). We intro-
duce the following notations (more details are provided later):
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u; v; q! u; v;q 2 Q h; ð2:5Þ
~F;~G! F;G 2 Xh; ð2:6Þ
div! DIVh : Xh ! Q h; ð2:7Þ
Kr! GRADh : Q h ! Xh; ð2:8ÞZ

X
uvdxþ

Z
oX

uvdx! ½u;v�Q � uTMQ v; ð2:9ÞZ
X

~F �K�1~Gdx! ½F;G�X � FTMXG: ð2:10Þ
With these notations, the discrete analog of the system (2.3) is
DIVhFh ¼ q; Fh ¼ �GRADhuh: ð2:11Þ
2.1. The discretization of scalar and vector-functions

The MFD discretization of scalar and vector-functions is fairly standard for readers familiar with the high-order mixed
finite element methods. We consider a partition T h of the computational domain X into N E polygonal elements:
X ¼
[N E

i¼1

Ei:
Let hi denote the diameter of polygon Ei and h ¼ maxihi be the discretization parameter. The area of E is denoted by jEj. We
also write jej for the length of the edge e. Finally, let N e be the number of edges in the polygonal mesh, and N e;0 be the num-
ber of boundary edges.

In the high-order MFD methods, a scalar function v is represented (inside X) by its average values on mesh elements:
ðvÞi ¼
1
jEij

Z
Ei

v dx; 1 6 i 6 N E; ð2:12Þ
where ðvÞi denotes the ith component of vector v. On each boundary edge of oX, the function v is represented by two num-
bers, the first two moments of v:
ðvÞN Eþj ¼
Z

ej

vðsÞds; ðvÞN EþN e;0þj ¼
Z

ej

vðsÞsds; 1 6 j 6 N e;0; ð2:13Þ
where s is the edge parametrization, s 2 ½�1=2;1=2�. We assume that the edge is parameterized from the end-point with the
lower index to the end-point with the higher index. The integrals in (2.13) are the 0th and 1st moments of v, respectively.
Sometimes it will be convenient to write ðvÞEi

instead of ðvÞi, ðvÞ
0
ej

instead of ðvÞN Eþj, and ðvÞ1ej
instead of ðvÞN EþN e;0þj.

We denote by Qh the space of all possible representations of scalar functions. The dimension of Qh is equal to N E þ 2N e;0.
For a function v, we denote by ðvÞI a vector from Q h whose components are defined by (2.12) and (2.13). Whenever no con-
fusion may arise, we shall use (2.5); for instance, we shall write v instead of ðvÞI .

Let~ne be the unit normal vector to edge e. We assume that for any boundary edge e vector~ne points in an outward direc-
tion for X. A vector-function ~G is represented by the 0th and 1st moments of ~G �~ne on mesh edges:
fðGÞ0j ; ðGÞ
1
j g ¼

Z
ej

~GðsÞ �~nej
ds;

Z
ej

~GðsÞ �~nej
sds

( )
; ð2:14Þ
where j ¼ 1; . . . ;N e.
We denote by Xh the space of all possible representations of vector functions using only moments (2.14). The dimension

of Xh is equals to 2N e. For a vector-function ~G, we denote by ð~GÞI a vector in Xh whose components are moments (2.14).
Whenever no confusion may arise, we shall use (2.6); for instance, we shall write G instead of ð~GÞI .

The degrees of freedom in the low-order MFD method include (2.12) and only the 0th moments in (2.13) and (2.14). It
was shown in [4] that the low-order MFD method is second-order accurate for the scalar variable and first-order accurate
for the flux variable. Additional degrees of freedom are required to build the high-order MFD method (see Fig. 1).

Remark 1. Another high-order MFD method can be developed by using different degrees of freedom for the flux ~F. For
example, we may use 0th moments of ~F �~ne on two half-edges of every mesh edge e.
2.2. The discretization of integrals

Let ½u; v�Q denote the inner product in Qh. It can also be viewed as a quadrature rule for the inner product of two scalar
functions:



Fig. 1. Schematic illustration of degrees of freedom in the low-order (a) and high-order (b) MFD methods. The arrows represent flux unknowns. The solid
circles represent temperature unknowns.
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½u; v�Q �
Z

X
uvdxþ

X
e2oX

Z
e

uvdx:
With the chosen degrees of freedom, the natural choice for the discrete inner product is
½u; v�Q ¼
X
E2T h

jEjðuÞEðvÞE þ
X
e2oX
Qeðu; vÞ; ð2:15Þ
whereQeðu; vÞ is the quadrature rule for the edge integral. Since we have two degrees of freedom per mesh edge, we assume
that this quadrature rule is exact for linear functions. Derivation of this quadrature rule is described in Appendix A.

Derivation of the inner product in Xh is less straightforward and will be discussed in Section 3. Let K be a discontinuous
piecewise constant approximation of tensor K. We shall write KE for the value of K on element E. We choose KE as the L2-
projection of K onto the space of piecewise constant tensors. Then, we write formally
½F;G�X ¼
X
E2T h

½F;G�X;E �
X
E2T h

Z
E

~F �K�1~Gdx: ð2:16Þ
The formula for ½�; ��X;E is derived in Section 3.

2.3. The discretization of operators

The discretization of the divergence operator div follows from the divergence theorem:
Z
E

div~Gdx ¼
X
e2oE

Z
e

~G �~nE dx;
where ~nE is the unit outward normal vector to oE. Using the central point quadrature rules, we get
ðDIVhGÞE ¼
1
jEj
X
e2oE

jejðGÞ0e ð~ne �~nEÞ: ð2:17Þ
Note that ~ne �~nE is either 1 or �1 depending on the mutual orientation of normal vectors.
The discretization of the operator Kr follows from the discrete Green formula. But first, we define the extended discrete

divergence operator:
DhG ¼
ðDIVhGÞE 8E 2 T h;

ð�ðGÞ0e ;�ðGÞ
1
e Þ

T 8e 2 oX:

(

Remark 2. In the case of homogeneous boundary conditions, u0 ¼ 0, the boundary term in the Green formula (2.4)
disappears and there is no need to introduce the extended divergence operator.

We write the discrete Green formula by mimicking (2.4):
½G;GRADhv�X ¼ �½DhG; v�Q 8G 2 Xh 8v 2 Qh: ð2:18Þ
Finally, let matrices MX and MQ represent inner products (2.15) and (2.16), respectively. Substituting this in (2.18), we get
the explicit formula for the discrete gradient operator:
GRADh ¼ �M�1
X ðDhÞTMQ : ð2:19Þ
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Thus, the discrete gradient operator is negatively adjoint to the discrete extended divergence operator with respect to inner
products in Xh and Qh. Let Q0

h be the subspace of Qh corresponding to constant functions. Formulas (2.12) and (2.13) give the
following characterization of the space Q0

h.
An element v 2 Qh belongs to the space Q0

h if and only if
ðvÞi ¼ ðvÞ1 for i 6 N E þN e;0; ð2:20Þ
ðvÞi ¼ 0 for i > N E þN e;0: ð2:21Þ
Lemma 3. Q0
h is the null space of the operator GRADh.

Proof. We show that v 2 Qh is in the null space of the operator GRADh if and only if (2.20) and (2.21) are satisfied. Since
(2.20) and (2.21) hold only for elements of Q0

h , this will complete the proof.
An element v 2 Qh is in the null space of GRAD h if and only if
½G;GRADhv�X ¼ �½DhG;v�Q ¼ 0 8G 2 Xh: ð2:22Þ
In particular, for (2.22) to hold it is necessary and sufficient that it holds for all eG that are the basis elements of Xh.
Let eG 2 Xh be such that ðeGÞ0ek

¼ 1 and all other components are zero. Consider the case when ek is an interior edge shared
by elements Ei and Ej. For this eG we rewrite (2.22), using definition (2.17) of the discrete divergence operator,
½DheG; v�Q ¼ ð~nek
�~nEi
ÞjekjððvÞEi

� ðvÞEj
Þ ¼ 0: ð2:23Þ
Since ek is an arbitrary interior edge (2.23) implies that ðvÞEi
¼ ðvÞ1.

Now we consider the case when ek is a boundary edge that belongs to the element Ei. For this eG we rewrite (2.22), again,
using definition (2.17)
½DheG; v�Q ¼ jekjððvÞEi
� ðvÞ0ek

Þ ¼ 0: ð2:24Þ
Since ek is an arbitrary boundary edge (2.24) implies that ðvÞ0ek
¼ ðvÞ1. Thus (2.20) is satisfied.

To show that (2.21) is satisfied, we take eG 2 Xh, such that ðeGÞ1ek
¼ 1 and all other components are zero. If ek is an interior

edge, (2.22) is satisfied automatically for any v, since the discrete divergence operator does not depend on 1st moments on
interior edges. If ek is a boundary edge that belongs to the element Ei, using definition of the extended divergence operator,
and noting that the quadrature Qe is represented by the diagonal matrix Q e (see formula (5.9) in Appendix A), we get
½DheG; v�Q ¼ �12jekjðvÞ1ek
¼ 0: ð2:25Þ
Thus (2.21) is satisfied. This completes the proof. h
2.4. Solution algorithm

To solve system (2.11) efficiently, we duplicate flux unknowns on interior mesh edges and use only the fluxes associated
with element E in (2.17).

Let tilde in ðeGÞke denote a copy of ðGÞke , k ¼ 0;1. For every interior edge e, we impose the trivial continuity conditions:
ðeGÞke ¼ ðGÞke ; k ¼ 0;1: ð2:26Þ
To simplify notation, we write eG for the vector containing both ðeGÞke and ðGÞke . The vector eF is defined similarly. The size of
these new vectors is quadruple the number of interior edges plus twice the number of boundary edges. In addition, we use
tilde for analogs of discrete operators and matrices introduced above. Then, solution of system (2.11) subject to continuity
conditions (2.26) results in the following linear system [15, Chapter 16]:
fMX

eBT CTeB 0 0
C 0 0

264
375 eF

u
k

264
375 ¼ 0

q
0

264
375; ð2:27Þ
where k is the vector of Lagrange multipliers, eB ¼MQ
gDIVh , and the last block equation is the matrix representation of con-

tinuity conditions (2.26).
Observe that after rearranging rows and columns, the first 2� 2 diagonal block in (2.27) is a block-diagonal matrix with

as many blocks as there are mesh elements in T h. The size of each block is twice the number of mesh edges in E plus 1 (nine
for quadrilaterals). Therefore, the vectors of flux and pressure unknowns in (2.27) can be readily eliminated resulting in a
system for Lagrange multipliers with a sparse symmetric positive definite matrix. Efficient iterative methods, such as the
preconditioned conjugate gradient method, can be used to solve this system. After that, the primary unknowns eF and u
are calculated element-by-element.
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3. The inner product in Xh

In this section, we show how to define the inner product (2.16) or, in other words, the appropriate quadrature rule ½�; ��X;E
on element E. The definition of an inner product implies that there exist a positive definite matrix ME, such that
½F;G�X;E ¼ FT
EMEGE; ð3:1Þ
where FE (resp., GE) is a part of vector F (resp., G) that includes only unknowns associated with element E. Let Xh
E denote the

restriction of Xh to element E. For instance, for a quadrilateral element, FE 2 Xh
E is a vector of size 8.

We consider two methods for constructing ME. The first method extends the Kuznetsov–Repin approach [12,13] and re-
quires a partition of the element E into triangles. It is useful for problems where the discrete solution Fh has to be interpo-
lated in interior points of mesh elements. Moreover, this method can be easily extended to polyhedral meshes. The second
method is algebraic and develops further ideas of [6]. It does not require an auxiliary triangular partition.

3.1. Method using an auxiliary triangular partition

This method consists of the following four steps, schematically illustrated on Fig. 3.
Step 1: (Triangulation). We partition element E into nt , triangles D1; . . . ;Dnt . As shown in Fig. 2, there may be several ways

of doing so. Note that a partition with fewer triangles requires less computational work.
On each interior edge, we define two auxiliary flux unknowns; namely, the 0th and 1st moments of the normal flux. These

unknowns will be eliminated later. Let eXh
E be the new discrete space which includes original and auxiliary flux unknowns. For

instance, eXh
E has dimension 14 for the partition shown in Fig. 2b and dimension 20 for the partition shown in Fig. 2c. Let eXh

D

be the restriction of eXh
E to the triangle D.

Step 2: (Exact inner product on triangles). Here we construct the inner product in space eXh
E from inner products in spaceseXh

Di
, i ¼ 1; . . . ; nt . Mimicking the additivity property of integrals, we assume that
½eFE; eGE�eX h
E

¼
X
D2E

½eFD; eGD�eX h
D

or, equivalently, that
eFT
EME;huge

eGE ¼
X
D2E

eFT
DMD

eGD; ð3:2Þ
for any two vectors eFE and eGE in eXh
E. The matrix ME;huge represents the inner product in space eXh

E. Each matrix MD is a 6� 6
symmetric positive definite matrix. We show that for the triangle D there exist only one matrix MD that exactly integrates
the weighted product of two linear vector-functions.

A general linear vector-function ~Gðx; yÞ has six parameters:
~Gðx; yÞ ¼ a1~u1ðx; yÞ þ � � � þ a6~u6ðx; yÞ ¼
a1 þ a3xþ a5y

a2 þ a4xþ a6y

� �
: ð3:3Þ
For each triangle D, we define the matrix M coef as follows:
ðMcoefÞij ¼
Z

D

~uT
i �K�1

E ~uj dx; 1 6 i; j 6 6: ð3:4Þ
This matrix is the quadrature rule in space UD spanned by ~u1; . . . ; ~u6 over triangle D. Every linear function ~G can be uniquely
represented by six moments on edges e1, e2 and e3 of triangle D:
Z

ej

~G �~nej
ds and

Z
ej

ð~G �~nej
Þsds; j ¼ 1;2;3;
where s is the edge parametrization, s 2 ½�1=2;1=2�. Recall that these moments are our degrees of freedom. This implies that
there exists a bijective (one-to-one) mapping DD from the space UD to the space eXh

D. From linear algebra, we know that DD is
the 6� 6 matrix and its i-th column includes moments of ~ui �~nD on the edges of D. Then, the aforementioned matrix MD is
Fig. 2. Two sample ways (b) and (c) of triangulating a convex pentagon (a).
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MD ¼ D�T
D Mcoef D

�1
D : ð3:5Þ
According to (3.2), the matrix ME;huge is assembled from matrices MDi
, i ¼ 1; . . . ;nt . Let us split the components of eG 2 eXh

E into
three groups. The first group includes original (boundary) fluxes. The second and the third groups include the 0th and 1st
moments on interior edges, respectively. After re-arranging rows and columns of ME;huge in accordance with this slitting,
we get
: ð3:6Þ
A similar partition holds for the vector eFE. For example, for the partition shown in Fig. 2b, Mbb is the 10� 10 matrix, and M00
ii ,

M11
ii are 2� 2 matrices.
Step 3: (Elimination of the 0th moments). To eliminate the 0th moments on interior edges, we use the Kuznetsov–Repin

method [12,13]. For a vector-function ~G that is linear on E, we get
divð~GÞjE ¼ divð~GÞjDi
; i ¼ 1; . . . ;nt : ð3:7Þ
We mimic this property by insisting that
DIVhGE ¼ DIVh eGDi
; i ¼ 1; . . . ;nt ; ð3:8Þ
where the formula for the discrete divergence operator on triangle Di is constructed similarly to (2.17). The discrete diver-
gence operators involve only 0th moments. We rewrite linear relations (3.8) in the vector–matrix form:
eG0 ¼ HGE: ð3:9Þ
The matrix H is uniquely defined for some triangulations of E like that shown on the middle picture in Fig. 2. For other tri-
angulations, like the right one in the same figure, this matrix may depend on a few free parameters.

Plugging (3.9) and a similar formula for eF0 into the inner product formula (3.2), we get:
eGT
EME;huge

eFE ¼ bGT
EME;large

bFE; ð3:10Þ
where
ð3:11Þ
and
 cMbb ¼Mbb þHTM00
ii HþM0

ibHþ ðM0
ibHÞT: ð3:12Þ
Step 4: (Elimination of the 1st moments). To eliminate the 1st moments on interior edges, we use the following observation.
Let ~F ¼ Krp and ~G be any non-zero vector-function such that
div~G ¼ 0 in E;
~G �~n ¼ 0 on oE:

ð3:13Þ
Then integration by parts gives
Z
E

~F �K�1~Gdx ¼ �
Z

E
pðdiv~GÞdxþ

Z
oE

pð~G �~nÞdx ¼ 0: ð3:14Þ
We mimic property (3.14) by assuming that FE is the discrete solution and its extension bFE satisfies:
bFT
EME;large

bGint ¼ 0 8bGint ¼
0eG1

� �
: ð3:15Þ
Since eG1 is arbitrary, condition (3.15) implies
eF1 ¼ �ðM11
ii Þ
�1M1

biFE: ð3:16Þ
We impose the same restriction on vector bGE in (3.11). This immediately gives us
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bGT
EME;large

bFE ¼ GT
EME;smallFE;
where
ME;small ¼cMbb �M1
ibðM

11
ii Þ
�1M1

bi: ð3:17Þ
Our construction is completed by taking ME �ME;small.
To describe properties of matrix ME;small, we define the space
F ¼ KErðP2ðEÞÞ;
where P2ðEÞ is the space of polynomials of order 62. The dimension of space F is five and a general vector-function in F has
the following form:
~G ¼ a1
~w1 þ � � � þ a5

~w5 ¼ K
a1 þ a3xþ a4y

a2 þ a4xþ a5y

� �
: ð3:18Þ
Lemma 4. Let ~F and ~G be two linear vector-functions from F . Let FE and GE be their representations in Xh
E, i.e. FE ¼ ð~FÞIE and

GE ¼ ð~GÞIE. Then,
FT
EME;smallGE ¼

Z
E

~F �K�1
E
~Gdx:
Proof. We divide the proof into two parts. First, we show that the quadrature given by the matrix ME;large is exact for vector
functions from F . Then we show that the same property holds for the matrix ME;small.

Part 1: (Properties of ME;large). By construction, matrix ME;huge is the exact quadrature for the weighted L2-product of any
two vector-functions ~F1 and ~G1 that are piecewise linear on the triangular partition of E and have continuous normal
components on interior mesh edges (i.e. ~F;~G 2 HdivðEÞ). In Step 3, we make assumption (3.8). From the definition of the
divergence operator, we conclude that matrix ME; large is the exact quadrature for the weighted L2-product of ~F1 and ~G1 that
satisfy
div~F1 ¼ const and div~G1 ¼ const:
In particular, any ~F and ~G from F satisfy these requirements.
Part 2: (Properties of ME;small). To prove that ME;small provides the exact quadrature rule for the weighted L2-product of ~F

and ~G from F , it is sufficient to show that for all u2 2 P2ðEÞ, the vector bFE defined by moments of KEru2 �~nE satisfies the
condition (3.15). Let bGint be of the form (3.15). Then there exists a piecewise linear ~G1 that satisfies (3.13) and such that
bGint ¼ ð~G1ÞIE:
Indeed, on each triangle,~G1 is uniquely defined by six moments on edges. Since ~G1 is piecewise linear, the continuity of ~G1 �~n
on interior mesh edges is enforced by construction. Thus,
bFT
EME;large

bGint ¼
Z

E
ðKEru2Þ � ðK�1

E
~G1Þdx

¼ �
Z

E
u2div~G1 dxþ

Z
oE

u2ð~G1 �~nEÞdx ¼ 0:
This proves the assertion of the lemma. h

Remark 5. From the finite element viewpoint, the matrix MD from Step 2 is the mass matrix for the BDM1 finite elements
[3]. Also, formula (3.16) is used in the method of static condensation.
Fig. 3. Illustration of Steps 1–4 in construction of the matrix ME for a pentagon.
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3.2. Algebraic method

Let LE and L?E be two proper subspaces of Xh
E such that any vector GE 2 Xh

E can be uniquely decomposed as follows:
GE ¼ G1 þ G?; G1 2 LE; G? 2 L?E :
We define LE as the space of projections of all linear vector-functions from F into Xh
E. The other subspace is defined as the

orthogonal complement to LE with respect to the inner product induced by the matrix ME:
LE ¼ fG1 2 Xh
E : G1 ¼ ð~GÞIE; ~G 2 Fg;

L?E ¼ fG? 2 Xh
E : GT

?MEG1 ¼ 0 8G1 2 LEg:
ð3:19Þ
Let us choose a basis in Xh
E. We take five linearly independent vector-functions ~wk from (3.18) to form five basis vectors in

subspace LE:
Vk ¼ ð~wkÞIE; k ¼ 1; . . . ;5:
In general, we may pick an arbitrary basis in subspace L?E . But before doing that, we need a more constructive definition of
this subspace. Let ~F ¼ KEru2, where u2 2 P2ðEÞ. Then, the Gauss–Green formula for element E yields
Z

E

~F �K�1~Gdx ¼ �
Z

E
u2div~Gdxþ

Z
oE

u2
~G �~nE dx: ð3:20Þ
We mimic this formula as follows. Let, as before, FE ¼ ð~FÞIE and GE ¼ ð~GÞIE. Furthermore, letQleftðFE;GEÞ be a quadrature rule for
the integral in the left-hand side which is exact for any~F;~G 2 F . Let Qrightðu2;GÞ be a quadrature rule for the two integrals on
the right-hand side of (3.20). We assume that it is exact for any u2 2 P2ðEÞ and any linear vector-function ~G 2 ðP1ðEÞÞ2. In
addition, we assume that the matrix ME can be used for Qleft,
QleftðFE;GEÞ ¼ FT
EMEGE:
Finally, we assume that, for a given u2, Qrightðu2;GEÞ is a linear functional on Xh
E and can be represented by the unique vector

UE 2 Xh
E depending, of course, on u2. We enforce
QleftðFE;GEÞ ¼ Qrightðu2;GEÞ ð3:21Þ
or, equivalently,
FT
EMEGE ¼ UT

EGE: ð3:22Þ
Derivation of the vector UE is described in Appendix A. Choosing five linearly independent functions in P2ðEÞ (for example,
x; y; x2; xy and y2), we generate five corresponding vectors UE;1; . . . ;UE;5. We show in Appendix A thatQrightð1;GEÞ ¼ 0 for all GE

and therefore (3.21) is trivially satisfied. Then, the definition of subspace L?E becomes constructive:
L?E ¼ fG? 2 Xh
E : GT

?Uk ¼ 0; k ¼ 1; . . . ;5g:
Let nE be the number of edges in E, and V6; . . . ;V2nE be the orthonormal basis vectors in L?E :
VT
kVl ¼ dkl; 6 6 k; l 6 2nE:
Let DE be the 2nE � 2nE matrix whose i-th columns is vector Vi. With abuse of notations, we define a 5� 5 symmetric positive
definite matrix M coef :
Mcoefð Þij ¼
Z

E

~wi �K�1
E
~wj dx:
Inspired by Lemma 4 and our previous research on MFD methods [6,2], we define the matrix ME as follows:
ME ¼ D�T
E

Mcoef 0
0 jEjAE

� �
D�1

E ; ð3:23Þ
where AE is an arbitrary symmetric positive-definite matrix. From practical viewpoint, we may use the properly scaled iden-
tity matrix:
AE ¼ aEIE; aE ¼ traceðKEÞ:
Remark 6. The solution algorithm described in Section 2.4 uses only inverse of the matrix ME. According to (3.23),
calculation of M�1

E requires to invert only matrix Mcoef of size 5. This makes the algebraic approach more attractive for
practical implementation than the approach described in the previous section.
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3.3. Remarks on the low-order MFD method

The inner product matrix developed in [6] for the low-order MFD method can be also written in form (3.23). For com-
pleteness of the presentation, we provide a few additional details. We shall use superscript ‘(0)’ to stress that notations
now are related to the low-order MFD method.

The space Fð0Þ ¼ KErðP1ðEÞÞ is based on gradients of linear functions and, therefore, has dimension two. The two linearly
independent vectors are
Fig. 4
~w1 ¼ KErx and ~w2 ¼ KEry:
Thus, the matrix Mð0Þ
coef ¼ KE.

These similarities imply that the analysis performed in [4] for the low-order MFD method can be extended to the high-
order method to rigorously prove the second-order convergence estimates for both scalar and vector variables in the high-
order MFD methods. This will be the topic for future research.

4. Numerical experiments

We made a number of numerical experiments to verify the rate of convergence of the high-order MFD method and to
compare it with the low-order MFD method. The comparison has been done on sequences of randomly perturbed quadrilat-
eral and smooth polygonal median meshes.

Let ðu;~FÞ be the continuum solution to the problem (2.3) and ðuh; FhÞ be the solution to the corresponding discrete prob-
lem. We define the errors as follows:
eu ¼ jkðuÞI � uhjkQ � ½ðuÞ
I � uh; ðuÞI � uh�1=2

Q ;

eF ¼ jkð~FÞI � FhjkX � ½ð~FÞ
I � Fh; ð~FÞI � Fh�1=2

X :
ð4:1Þ
A randomly perturbed mesh (see the left picture in Fig. 4) is built from a square mesh with mesh size h ¼ 1=n by relocating
each interior mesh node p to a random position inside a square box BðpÞ. The box is centered at p, its sides are aligned with
the coordinate axis, and its size is h=2. Convergence analysis on the sequence of randomly perturbed meshes is the challeng-
ing test for any discretization method.

A polygonal median mesh (see Fig. 4b) is built in two steps. First, we generate the Voronoi tessellation for the set of points
ðxi;j; yi;jÞ given by
xi;j ¼ ni þ 0:1 sinð2pniÞ sinð2pgjÞ; i ¼ 0; . . . ; n;

yi;j ¼ gj þ 0:1 sinð2pniÞ sinð2pgjÞ; j ¼ 0; . . . ;n;
where ni ¼ ih, gj ¼ jh and h ¼ 1=n. Second, we move each interior mesh node p to the center of mass of a triangle formed by
the centers of three Voronoi cells sharing p.

Experiment 1: (Constant tensor). We consider the problem (2.1) in the unit square ½0;1�2 with K ¼ I and the exact solution
uðx; yÞ ¼ sinðpxÞ sinðpyÞ: ð4:2Þ
The results of calculations on the sequence of randomly perturbed quadrilateral meshes are shown in Fig. 5. Both low-order
and high-order MFD methods exhibit the second-order convergence rate for u in the mesh-dependent L2-norm (4.1). The
. Sample meshes from two sequences. Picture (a) shows a randomly perturbed quadrilateral mesh. Picture (b) shows a polygonal median mesh.



Fig. 5. Picture (a) shows the discrete solution for the problem in Experiment 1 on the 20� 20 randomly perturbed quadrilateral mesh. Picture (b) shows
convergence rates for the low-order and high-order MFD methods.
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low-order MFD method shows only the first-order convergence rate for the flux~F in the mesh-dependent norm, while in the
high-order MFD method the convergence rate is second-order.

Experiment 2: (Discontinuous tensor). We consider again the problem (2.1) in the unit square ½0;1�2 with the piecewise con-
stant tensor K,
Fig. 6.
the low
Kðx; yÞ ¼ a ¼ 10�3 for x < 0:5;
1 for x > 0:5

(
ð4:3Þ
and the exact solution
uðx; yÞ ¼ yðy� 1Þx2 for x < 0:5;
yð1� yÞð1� xÞða� xð1þ 2aÞÞ for x > 0:5:

(
ð4:4Þ
The results of calculations on the sequence of randomly perturbed quadrilateral meshes are shown in Fig. 6. As in the pre-
cious example, the high-order MFD method is second-order accurate for both u and~F. Both methods are second-order accu-
rate for u; however, the actual error is about six times smaller in the high-order MFD method.

Experiment 3: (Full tensor). We consider once more the problem (2.1) in the unit square ½0;1�2, first with the full isotropic
tensor K1 and then with the full anisotropic tensor K2:
K1 ¼
10 3
3 10

� �
; K2 ¼

10 3
3 1

� �
:

Let (4.2) be the exact solution. The eigenvalues of K2 are approximately 0.092 and 10.91, which implies that K2 is the
strongly anisotropic tensor.

The results of calculations on the sequence of polygonal median meshes are shown in Fig. 7. We observe some super-con-
vergence (1.5–1.6) of the flux ~F in the low-order MFD method. This implies that the polygonal meshes have underlying
smoothness. The high-order MFD method is again second-order accurate for both u and ~F.

Experiment 4: (Efficacy). We compare the low-order and high-order MFD methods for the problem with the discontinuous
coefficient. Efficacy of the method (accuracy versus cost) depends on many factors including optimality of the chosen linear
The left picture shows the discrete solution on the 64� 64 randomly perturbed quadrilateral mesh. The right picture shows convergence rates for
-order and high-order MFD methods for the problem in Experiment 2.



Fig. 7. Convergence rates for the low-order and high-order MFD methods on polygonal median meshes for the problem in Experiment 3. The left picture
shows convergence rates for the constant full isotropic tensor K1. The right picture shows convergence rates for the full anisotropic tensor K2.

Fig. 8. Accuracy of the low-order (dashed lines) and high-order (solid lines) MFD methods versus the number of non-zero entries in the matrix employed in
the linear solver. The circles and triangles correspond to the scalar and vector variables, respectively.
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solver. Optimal linear solvers, such as the algebraic multigrid solver, may be adjusted to high-order discretizations [16],
which makes a fair comparison a non-trivial task. Here, we assume that complexity of a linear solver is proportional to
the number of non-zero entries in the matrix. In our case, this is the matrix of a linear system for the Lagrange multipliers
(see Section 2). The graphs for the scalar variable u in Fig. 8 do not intersect since both methods are second-order accurate for
this variable. However, graphs for the flux variable do intersect. This implies that the high-order MFD method becomes more
efficient than the low-order MFD on relatively coarse meshes of n� n cells ðn P 16Þ.

5. Conclusion

We developed new high-order mimetic finite difference methods which are second-order accurate for both scalar variable
u and its flux ~F. The first method is based on partition of each polygonal cell into triangles. The second one uses only the
normals to polygon edges, length of edges, and quadrature rules for edge integrals. The second method results in a family
of discretizations with equivalent properties. Both methods were developed in two-dimensions. Their extension to three
dimensions will be the topic for future research.
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Appendix A

Here we explain how to construct the quadrature rule Qrightðu2;GEÞ, GE ¼ ð~GÞIE, for the right-hand side of (3.20) which is
exact for any quadratic u2 2 P2ðEÞ and linear ~G 2 ðP1ðEÞÞ2.

Let /i, i ¼ 1; . . . ;5, be the functions from P2ðEÞ such that r/i ¼ ~wi, where ~wi is defined in (3.18). Then, any u2 2 P2ðEÞ can
be represented as follows:
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u2 ¼ b0 þ b1/1 þ � � � þ b5/5:
First, we consider the case b0 ¼ 0. Let b be the vector inR5, b ¼ ðb1; . . . ; b5ÞT. The first term in Qright comes from the area inte-
gral. Since div~G is constant, we apply the following exact quadrature:
Z

E
u2div~Gdx ¼ ðDIVh

EGEÞbTa � bTQ 1GE; ð5:5Þ
where DIVh
E is a 1� 2nE matrix, a part of the discrete divergence matrix DIVh, Q 1 is the 5� 2nE matrix, and
a ¼ ða1; . . . ; a5ÞT; ai ¼
Z

E
/i dx:
Note that integration over element E is easily reduced to integration over oE using the divergence theorem.
The second term in Qright comes from the boundary integral. Formally, we can write
Z

oE
u2ð~G �~nEÞdx ¼ bTQ 2GE; Q 2 ¼ ½Q 2;1; . . . ;Q 2;nE

�; ð5:6Þ
where Q 2 is the 5� 2nE matrix and the 5� 2 matrix Q 2;j corresponds to the j-th edge of E. Let us consider the first edge, e1,
and denote the i-th row of Q2;1 by QðiÞ2;1. Then
/ije1
¼ c1 þ c2sþ c3s2;
where s is the parametrization of edge e1, s 2 ½�1=2;1=2�. Let Xh
e1

be restriction of Xh
E to edge E, and T1 be a mapping from Xh

e1

to P1ð½�1=2;1=2�Þ,
T1 ¼
1 0
0 12

� �
:

Note that
Z
e1

/iðd1 þ d2sÞdx ¼ cT
i Rd; ð5:7Þ
where
ci ¼ ðci1; ci2; ci3ÞT; d ¼ ðd1; d2ÞT and R ¼ je1j
1 0
0 1=12

1=12 0

264
375:
Thus, Q ðiÞ2;1 ¼ cT
i RT1. The other edges of E are treated in the same way. Finally,
Qrightðu2;GEÞ ¼ bTðQ 2 � Q 1ÞGE ð5:8Þ
and the vectors UE in (3.22) are the rows of matrix Q 2 � Q 1.
Now, we consider the case u2 ¼ b0. Using the above notations, we get that a ¼ jEj and Q 2;1 ¼ je1j½1 0�. The definition of the

divergence implies that Q 2 ¼ Q 1, i.e. Qrightð1;GEÞ ¼ 0 for any GE.
The argument similar to that used in derivation of (5.8) can be used to get the quadrature rule for the edge integral in

(2.15):
Qeðu; vÞ ¼ uT
e Q eve;
where ue; ve are restriction of u; v 2 Qh to the edge e, and
Q e ¼ jejTT
1

1 0
0 1=12

� �
T1 ¼ jej

1 0
0 12

� �
: ð5:9Þ
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